
Scaling behaviour of cluster hulls in spiral site percolation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 3963

(http://iopscience.iop.org/0305-4470/26/16/013)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. phys. A Math. Gen. 26 (1993) 39623971, Rinted m the UK 
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700009, India 

Received 27 November 1992 

Abstract. The scaling behaviour of the percolation hull of large clusters in the case of 
mtationally constrained site permlation on the square and triangular lattices is studied. 
The single cluster growth method has been used to determine the values of some critical 
enponenu. Evidence is obtained for a scaling form of the hull size distribution function. 

1. Introduction 

Percolation under rotational constraint, referred to as ‘spiral percolation’, has recently 
been studied (Santra and Bose 1981, 1992) on the square and triangular lattices. In 
spiral percolation, each path proceeds either straight or in a specific rotational direction, 
say clockwise. Percolation occurs if a cluster obeying the rotational constraint spans 
the underlying lattice. The critical percolation probability p ,  has been determined using 
the binary search method. Different techniques like finite-size scaling, Monte Carlo 
(MC) simulation and series expansion have been used to determine some critical 
exponents. Based on the data available, a scaling form of the cluster distribution 
function has been verified. The fractal dimension D of the largest (‘inlinite’ or ‘span- 
ning’) cluster at p .  has also been determined and the cluster has been found to be 
nearly compact. An example of rotational constraint is obtained from the motion of 
an electron in the presence of a magnetic field perpendicular to the plane of motion. 
In spiral percolation, since motion is possible in both the forward direction and in a 
specific rotational direction, the appropriate example is the cycloidal motion of an 
electron in a disordered structure in the presence of crossed electric and magnetic 
fields. A quantitative study of the associated Hall effect may, however, require a more 
general version of the spiral percolation model. One important quantity in the percola- 
tion problem is the cluster extemal perimeter or ‘hull’ of the large clusters. The hull 
of a cluster is the continuous path of occupied sites at the extemal boundary of the 
cluster. The hull has a significance of its own apart from being a part of the percolation 
cluster. Sapoval et al (1985) have shown that the diffusion front resulting in difision 
from a source has a fractal structure that is related to the hull of percolation clusters. 
The percolation cluster hull in the case of undirected percolation exhibits scaling 
behaviour characterized by critical exponents which have values different from those 
of analogous quantities in the case of percolation clusters (Voss 1984, Weinrib and 
Trugman 1985, Ziff 1986). In this paper, we study the scaling behaviour of the hull in 
the case of spiral site percolation on the square and triangular lattices. In section 2, 
the scaling relations and the method used to obtain the scaling exponents are described. 
Section 3 contains the results obtained and a discussion of these results. 
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2. Scaling relations 

This section contains the formulae and procedural details for calculation of some 
critical exponents to be defined below. The calculation of critical exponents has been 
done using the single-cluster growth method (Leath 1976, Alexandrowitz 1980) in 
which clusters are grown singly starting from a fixed origin. The size of the hull is 
given by the number of sites belonging to the hull and is determined by the method 
of Ziff et al (1984). The hull size distribution is given by 
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PH ( P) = NHI Ncot (1) 

where NH is the number of hulls of size H in a total number N,, of clusters generated. 
Since each cluster has a hull associated with it, N,,, is also the total number of hulls 
generated. The various moments of P H ( p ) ,  Xh H k P H ( p )  become singular as p + p c .  
The prime over the summation symbol denotes that the largest hull is excluded from 
the sum. In this paper we calculate the first two moments ,yH and XL corresponding 
to k = 1 and 2, respectively; ,yH gives the average hull size. As p + p e ,  ,yH and ,yh are 
given by 

X H  -IP-PCI-~" and XL-IP-Pcl-7; (2) 

where yH and yt( are the critical exponents. Formulae (1) and (2) are analogous to 
those defined for the percolation cluster (Santra and Bose 1992). 

The fractal dimension of the hull of a percolation cluster has been determined 
using the method described by Ziff (1986). The position of every 64th occupied site is 
recorded, and this is done up to 1024 sites. Pairs from the list of points recorded are 
used to find the average distances for points separated by 64, 128, 192,. . . sites. The 
distances denoted by R are averaged over the total number of clusters. The average 
of R is given by 

( R ) -  H'jDn (3) 

from which DH, the fractal dimension of the hull, can be determined. DH is related 
to the fractal dimension D of the percolation cluster by the relation 

D H / D = x  (4) 

H - Sx. (5) 

where x is obtained from the scaling relation 

S and H are the number of sites in the percolation cluster and the percolation cluster 
hull, respectively. The hull size distribution P H ( p )  is assumed to have a scaling form, 
as p + p c ,  similar to the cluster size distribution and is given by 

PH( p) = H-'"'"+'f[ (p  - pJ H"n]. (6) 

The exponents rH and uH can be determined from the measured values of the exponents 
yH and y h  through the relations 

(7) 
3YL-4YH and T H  = 

The scaling behaviour described in equations (2)-(7) is similar to that for undirected 
percolation (Ziff 1986). 

1 
UH =- 

Y H - Y H  Y L - Y H  ' 
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3. Results and discussion 

The square and triangular lattices used for the simulation are of size 140x 140 and 
130 x 130, respectively. The values of the cluster exponents for spiral site percolation 
on the square lattice are already known (Santra and Bose 1992). The value of the 
correlation length exponent v has, however, been wrongly quoted in the earlier work. 
In table 1,  the correct value of Y as well as the values of the other exponents are given. 

Table 1. Numerical estimates of cluster exponents for spiral site percolation on the square 
and triangular lattices. 

Finite-size scaling MC simulation 
Lattice 
type Y l V  Y l l  D P I U  Y Yr Y 

Square 2.OliO.06 4.05i0.13 1.957i0.009 0.043i0.009 2.19i0.07 4.51i0.16 1.11610.003 
Triangular 1.97 1 0.01 4.00 i 0.02 1.969 i 0.014 0.03 1 i 0.014 2.23 i 0.02 4.61 i 0.05 1.136 * 0.006 

In the earlier paper, spiral site percolation on the triangular lattice has been considered 
with the constraint that only those tumings in the clockwise direction are allowed 
which have the least deviation from the original direction of motion. We now study 
spiral site percolation on the triangular lattice with tumings allowed in all clockwise 
directions. The values of p,(L) for lattices of size L x  L, where L ranges from 30 to 
130, are given by p,(30) = 0.585, p,(40) = 0.588, p,(50)  = 0.589, p,(60) = 0.590, p,(70) = 
0.591, ~ ~ ( 8 0 )  =0.592, p,(90) =0.592, p,(IOO) =0.592, ~ ~ ( 1 1 0 )  =0.593, ~ ~ ( 1 2 0 )  = 0.593 
and p,(130)=0.593. The critical exponents are determined using the techniques of 
finite-size scaling and MC simulation, details of which can be obtained from the paper 
by Santra and Bose (1992). The values of pc used for obtaining finite-size scaling and 
MC simulation data for various lattice sizes are the p. values for respective lattice sizes. 
The values of the critical exponents determined are shown in table 1. The cluster and 
hull sizes have been recorded in bins; the ith bin contains sizes in the range 2'-' to 

2 00- 
1.20 1.60 2.00 

lQg(R) 

Figure 1. A plot of log(H) versus log(R) for the square lattice, From the slope, the value 
of the fractal dimension DH = 1.476i0.005 (equation (3)). 
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(2’ - 1). The total number of clusters generated is 10 000. We now describe the results 
for the hull exponents for spiral site percolation on the square lattice. Figure 1 shows 
a plot of log(H) versus log(R), which in accordance with (3 )  is found to be a straight 
line. From the slope of the straight line, the fractal dimension DH of the hull is 
calculated as D, = 1.476.tO.005. The exponent x is obtained from relation (5) by 
plotting log(H) versus log(S). Figure 2 shows this plot, a straight line, from the slope 
of which the exponent x is determined as x = 0.74i 0.02. From relation (4) and table 
1, x is calculated as x=0.75+0.01, which agrees within the limits of error with the 
measured value of x. Figures 3 and 4 give the plots of log(xH) and log(,yL) versus 
loglp-p,l. From the slopes of the straight lines (relation (2)) the exponents yH and 
yh are determined as yH = 1.82*0.01 and y L  =3.75*0.02. The errors quoted in the 
values of the exponents are the standard least-squares fit errors with the statistical 
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Figure 2. A plot of log(H) versus log(S) for the square lattice. From the slope, the value 
of the exponent x is x = 0.14+0.02 (equation (5)). 

1601 
-1.LO -1.20 -i.bO 

lOglP-P,l 

Figure 3. A plot of log(xH) versus Ioglp-pJ for the square lattice. From the slope, the 
value of the exponent yH is yH = 1.82+0.01 (equation (2)). 
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3.60- 
-1.40 -1.20 -1.00 

w P - P , l  

Flgure 4. A plot of log(,&) versus loglp -pFI for the square 
value of the exponent y k  is yh  =3.75*0.02 (equation (2)). 

tticc. From 
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?e, the 

z I . ( ; ,  ; * + e  

0 
-3.00 -2.00 -l.w 0 

IP-PJH'" 

Figure 5. A plot o f  P,,(p) /P,(p,)  against (p-p,)H"m for 13 different values of p with 
cH=0.518 for the square lattice. ( p - p , )  has values in the range 0.015 to -0.110 with 
32 < H  <512. The symbol E3 indicates the position of the point (0,l). The data plotted 
correspond t o p  -p,=O.OlS (+), -0.030 (O), -0.035 (O), -0.040 (A), -0.045 (O) ,  -0.050 
(+), -0.055 (V), -0.060 (x), -0.070 (O), -0.080 (V), -0.09 (A), -0.100 (a)  and -0.110 
(W. 

error of each data point taken into account. From equations (7), the exponents uH 
and T~ are calculated as uH = 0.5 18 f 0.008, T = 2.06.t 0.02. A verification of the scaling 
function form in equation (6) is possible by plotting PH ( p ) / P H  (p , )  against ( p  - p C ) H u ~ .  
If the scaling form is true, then, for sufficiently large clusters and for different values 
of p,  the data should collapse on to a single curve. Figure 5 shows such a plot for 13 
different values of p .  The data for different values of p have been marked by different 
symbols, ( p - p J  being in the range 0.015 to -0.110. The hull size H is within the 
limits 32-512. The symbol 0 denotes the location of the point (0, I). The data collapse 
on to a single curve is found to be quite good, thus verifying the scaling function 
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Table L Numerical estimates of hull exponents for spiral site percolation on the square 
and triangular lattices. 

~~~ ~ 

Lattice type D,, X YK rL U* In 

square 1.4761 0.005 0.74+0.02 1.82 iO.01 3.75 iO.02 0.518i 0.008 2.061 0.02 

Triangular 1.466+0.016 0.76+0.02 ~ 1.91i0.01 3.87i0.03 0.510i0.010 2.03i0.05 
DHID =O.75+0.01 

Dn/D=0.7S+0.01 

form (6). Table 2 displays the results, mentioned above, for the various exponents. An 
identical study is carried out for spiral site percolation on the triangular lattice. Figures 
6-10 are in one-to-one correspondence with the figures 1-5 for percolation on the 
square lattice. The values of the exponents are given in table 2. 

1 2 0  1 60 2 00 
l o g m  

Figure 6. A plot of log(H) versus log(R) for the triangular lattice. From the slope, the 
value of the fractal dimension DH = 1.466i0.016 (equation (3)).  

10g,H~3’/ 2.10 .jil_ , 

1.50 
1. 50 2,30 3.10 3.90 

IOQISI 

Figure 7. A plot of log(H) versus log(S) for the triangular lattice. From the slope, the 
value of the exponent x is x=0.76+0.02 (equation (5 ) ) .  
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1.601 
-1.40 - l .M -100 

loglP-Pcl 

Figure 8. A plot of Iog(xH) versus loglp -psi for the triangular lattice. From the slope, the 
value of the exponent y,, is yH = 1.91-tO.01 (equation (2)). 

Fisure 9. Aplot of log(,&) versus loglp-pJ for the triangular lattice. From the slope, the 
value of the exponent & is y& =3.87+0.03 (equation (2)). 

By examining tables 1 and 2 we reach the following conclusions. From the values 
of the fractal dimensions calculated for both the cluster and the hull, the cluster appear 
to be nearly compact whereas the hulls are fractal. Figures l l ( a )  and l l (6 )  show a 
typical spiral percolation cluster and its hull on a square lattice of size lOOx 100. 
Clusters and hulls have a similar behaviour but the critical exponents have different 
magnitudes. The exponents U, and T~ have similar values within the margin of error 
for both the square and triangular lattices. The last two results are in agreement with 
the scaling behaviour characteristic of undirected percolation. In this case, the clusters 
are also fractal objects and are not nearly compact as in the case of spiral percolation. 
The values of yH and rL quoted in table 2 do not seem to agree within the limits of 
error for the square and triangular lattices. Apparently, the errors have been underesti- 
mated. The expressions (7) for uH and rH involve differences in the values of r;l and 
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8 
.:I. 

- s %= 6 1 , ; . i , , * ,  
- X L  

'. a= 
% * 

2 . 
0 . A  

-3.00 -2.W -1 00 0 
IP.P,lH~H 

Figure 10. A plot of P,(p)/P,(p,) against (p-pJH'+ for 13 different values ofp with 
( T ~  =0.510 for the triangular lattice. ( p - p , )  has values in the range 0.015 IO -0.110 with 
16<Hc512. The symbol @ indicates the position of the point (0,l). The data plotted 
correspond to p-p,=O.O15 (e), -0.30 (O), -0.035 (O), -0.040 (A), -0.045 (O), -0.050 
(+), -0.055 (x), -0.064 (V), -0.070 (a), -0.080 (m), -0.090 (O), -0.100 (A) and -0.110 
(W. 

Figure 11. Example of ( u )  a spiral permlation spanning cluster and ( b )  its hull on a square 
lattice of size lOOx 100 at pc=0.7083. 

yH, which lead to an agreement of values of uH and rH within the limits of error for 
both the square and triangular lattices. For undirected percolation, Sapoval er af (1985) 
have proposed the relation DH = 1 + 1/ Y between the fractal dimension DH of the hull 
and the correlation length exponent v. This prediction is supported by direct measure- 
ment (Voss 1984, Kremer and Lyklema 1985). From tables 1 and 2 one can verify that 
the conjectured relation does not hold true for spiral site percolation and so seems to 
be characteristic only of undirected percolation. 
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