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Scaling behaviour of cluster hulls in spiral site percolation
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Depattment of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Roadg Calcutta
700009, India

Received 27 November 1992

Abstract. The scaling bebaviour of the percolation hull of large clusters in the case of
rotationally constrained site percolation on the square and triangular lattices is studied.
The single cluster growth method has been used to determine the values of some critical
exponents. Evidence is obtained for a scaling form of the hull size distribution function.

1. Introduction

Percolation under rotational constraint, referred to as ‘spiral percolation’, has recently
been studied {Santra and Bose 1981, 1992) on the square and triangular lattices. In
spiral percolation, each path proceeds either straight or in a specific rotational direction,
say clockwise. Percolation occurs if a cluster obeying the rotational constraint spans
the underlying lattice. The critical percolation probabiiity p. has been determined using
the binary search method. Different techniques like finite-size scaling, Monte Carlo
{Mc) simulation and series expansion have been used to determine some critical
exponents. Based on the data available, a scaling form of the cluster distribution
function has been verified. The fractal dimension D of the largest (‘infinite’ or ‘span-
ning’) cluster at p, has also been determined and the cluster has been found to be
nearly compact. An example of rotational constraint is obtained from the motion of
an electron in the presence of a magnetic field perpendicular to the plane of motion.
In spiral percolation, since motion is possible in both the forward direction and in a
specific rotational direction, the appropriate example is the cycloidal motion of an
electron in a disordered structure in the presence of crossed electric and magnetic
fields. A quantitative study of the associated Hall effect may, however, require a more
general version of the spiral percolation model. One important quantity in the percola-
tion problem is the cluster external perimeter or ‘hull’ of the large clusters. The hull
of a cluster is the continuous path of occupied sites at the external boundary of the
cluster. The hull has a significance of its own apart from being a part of the percolation
cluster. Sapoval et al (1985} have shown that the diffusion front resulting in diffusion
from a source has a fractal structure that is related to the hull of percolation clusters.
The percolation cluster hull in the case of undirected percolation exhibits scaling
behaviour characterized by critical exponents which have values different from those
of analogous quantities in the case of percolation clusters (Voss 1984, Weinsib and
Trugman 1985, Ziff 1986). In this paper, we study the scaling behaviour of the hull in
the case of spiral site percolation on the square and triangular lattices. In section 2,
the scaling relations and the method used to obtain the scaling exponents are described.

Section 3 contains the results obtained and a discussion of these resuits.
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2. Scaling relations

This section contains the formulae and procedural details for calculation of some
critical exponents to be defined below. The calculation of critical exponents has been
done using the single-cluster growth method (Leath 1976, Alexandrowitz 1980) in
which clusters are grown singly starting from a fixed origin. The size of the hull is
given by the number of sites belonging to the hull and is determined by the method
of Ziff ef al (1984). The hull size distribution is given by

Py(p)= Ny/Na (1)

where Ny is the number of hulls of size H in a total number N, of clusters generated.
Since each cluster has a hull associated with it, N, is also the total number of hulls
generated. The various moments of Py (p), 2% H *P.;(p) become singular as p - p..
The prime over the summation symbol denotes that the largest hull is excluded from
the sum. In this paper we calculate the first two moments y, and xk corresponding
to k=1 and 2, respectively; xy gives the average hull size. As p - p., xx and yy are
given by

X~ |p=pd ™" and xu~|p—pl 7 (2)

where vy and yY% are the critical exponents. Formulae (1) and (2) are analogous to
those defined for the percolation cluster (Santra and Bose 1992).

The fractal dimension of the hull of a percolation cluster has been determined
using the method described by Ziff (1986). The position of every 64th occupied site is
recorded, and this is done up to 1024 sites. Pairs from the list of points recorded are
used to find the average distances for points separated by 64, 128, 192, ... sites. The
distances denoted by R are averaged over the total number of clusters. The average
of R is given by

(R)y~H'Px (3)

from which Dy, the fractal dimension of the hull, can be determined. Dy, is related
to the fractal dimension D of the percolation cluster by the relation

Du/D=x (4)
where x is obtained from the scaling relation
H~§* (3)

S and H are the number of sites in the percolation cluster and the percolation cluster
hull, respectively. The hull size distribution Py (p) is assumed to have a scaling form,
as p-— p., similar to the cluster size distribution and is given by

Py(py=H""""'f[(p-p)H™]. (6}

The exponents 7 and o can be determined from the measured values of the exponents
v and v} through the relations

1 395 —4
=— and Ty = M
Yr—¥n YH~— Yu
The scaling behaviour described in equations (2)-(7) is similar to that for undirected

percolation (Ziff 1986).

Oy

N
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3. Results and discussion

The square and triangular lattices used for the simulation are of size 140x 140 and
130 x 130, respectively. The values of the cluster exponents for spiral site percolation
on the square lattice are aiready known (Santra and Bose 1992). The value of the
correlation length exponent » has, however, been wrongly quoted in the earlier work.
In table 1, the correct value of v as well as the values of the other exponents are given.

Table 1. Numerical estimates of cluster exponents for spiral site percelation on the square
and triangular lattices.

Finite-size scaling MC simulation
Lattice .
type v/ ¥ D B/e Y v v
Square 2.01+0.06 4.05+0.13 19570009 0.043+0.009 2.19+0.07 4.51+0.16 1.116=0.003

Triangular 197001 4.00::0.02 1.969:0.014 0.031+0.014 2.23+0.02 461005 1.136=0.006

In the earlier paper, spiral site percolation on the triangular lattice has been considered
with the constraint that only those turnings in the clockwise direction are allowed
which have the least deviation from the original direction of motion. We now study
spiral site percolation on the triangular lattice with turnings allowed in all clockwise
directions. The values of p.(L) for lattices of size Lx L, where L ranges from 30 to
130, are given by p.(30) =0.585, p.(40) = 0.588, p.(50) = 0.589, p.(60) =0.590, p.(70) =
0.591, p.{80)=0.592, p.(90)=0.592, p,(100)=0.592, p.(110}=0.593, p.(120)=0.593
and p.(130}=0.593. The critical exponents are determined using the techniques of
finite-size scaling and Mc simulation, details of which can be obtained from the paper
by Santra and Bose (1992). The values of p, used for obtaining finite-size scaling and
Mc simulation datia for various lattice sizes are the p, values for respective lattice sizes.
The values of the critical exponents determined are shown in table 1. The cluster and
hull sizes have been recorded in bins; the ith bin contains sizes in the range 2™ to
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Figure 1. A plot of log(H) versus log{R}) for the square lattice. From the slope, the value
of the fractal dimension Dy, = 1.476 £0.005 (equation (3}).
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(2° —1). The total number of clusters generated is 10 000. We now describe the results
for the hull exponents for spiral site percolation on the square lattice. Figure ! shows
a plot of log(H) versus log(R}, which in accordance with (3) is found to be a straight
line. From the slope of the straight line, the fractal dimension Dy of the hull is
calculated as Dy =1.476+0.005. The exponent x is obtained from relation (5) by
plotting log( H') versus log(S). Figure 2 shows this plot, a straight line, from the slope
of which the exponent x is determined as x =0.74+0.02. From relation (4) and table
1, x is calculated as x =0.75£0.01, which agrees within the limits of error with the
measured value of x. Figures 3 and 4 give the plots of log{(x,;) and log(xy) versus
log|p — p.|. From the slopes of the straight lines (relation (2)) the exponents yy and
i are determined as yy = 1.82+0.01 and v} =3.75+0.02. The errors quoted in the
values of the exponents are the standard least-squares fit errors with the statisticat

3130
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Figure 2. A plot of log{ H) versus log(8) for the square lattice. From the slope, the value
of the exponent x is x = 0.74 (.02 (equation (5)).
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Figare 3. A plot of log(xy) versus log|p — p. for the square lattice. From the slope, the
value of the exponent vy is v =1.82+£0.01 (equation (2)).
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Figure 4. A plot of log(x}) versus loglp — p| for the square lattice. From the slope, the
value of the exponent vy is vy =3.75£0.02 (equation (2)).
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Figure 5. A plot of Py{p)/ Py(p.) against {p—p}H™ for 13 different values of p with
o =0.518 for the square lattice. {p—p.) has values in the range (.015 to —0.110 with
32 < H <3512, The symbol @ indicates the position of the point {0, 1). The data plotted
correspond to p — p, = 0.015 (#), =0.030 (O}, —0.035 (), ~0.040 (A), —0.045 (<), —0.050
(+), =0.055 (7}, —0.060 (), —0.070 (@), —0.080 (¥), —0.09 (4), =0,100 (+r) and —0.110
().

error of each data point taken into account. From equations (7), the exponents oy
and 7y are calculated as oy =0.518 £0.008, 7 =2.06 £ 0.02. A verification of the scaling
function form in equation (6} is possible by plotting Py (p)/ Py (p.) against( p — p.) H °#.
If the scaling form is.true, then, for sufficiently large clusters and for different values
of p, the data should collapse on to a single curve. Figure 5 shows such a plot for 13
different values of p. The data for different values of p have been marked by different
symbols, (p—p.) being in the range 0.015 to —0.110. The hull size H is within the
limits 32-512. The symbol & denotes the location of the point (0, 1). The data collapse
on to a single curve is found to be quite good, thus verifying the scaling function
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Table 2. Numerical estimates of hull exponents for spiral site percolation on the square
and triangular lattices.

Lattice type

Dy x Y Yh Ty TH

Square

Triangular

147620005 074+002  182=001  3.75:002  0.518:0.008 2.06=0.02
Dy/D=10.75£001

1.466£0.016 0.76£0.02 © 1912001  3.87£0.03 051020010 2.03:0.05
Dy/D=0.75£0.01

form (6). Table 2 displays the results, mentioned above, for the various exponents. An
identical study is carried out for spiral site percolation on the triangular lattice. Figures
6-10 are in one-to-one correspondence with the figures 1-5 for percolation on the
square lattice. The values of the exponents are given in table 2,
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Figure 6. A plot of log(H} versus log{R) for the triangular lattice. From the slope, the
value of the fractal dimension Dy = 1.466x0.016 (equation (3}).
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Figure 7. A plot of log{H)} versus log(S) for the triangular lattice. From the slope, the
value of the exponent x is x =0.76 £0,02 (equation (5)).
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Figure 8. A plot of log(x: )} versus log|p — p | for the triangular lattice. From the slope, the
value of the exponent vy is vy = 1.91=0.01 (equation (2)).
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Figure 9. A plot of log(y’;) versus log|p — p.| for the triangular lattice. From the slope, the
value of the exponent v} is ¥k = 3.87+ 003 (equation (2)).

By examining tables 1 and 2 we reach the following conclusions. From the values
of the fractal dimensions calculated for both the cluster and the hull, the cluster appear
to be nearly compact whereas the hulls are fractal. Figures 11(a) and 11{h) show a
typical spiral percolation cluster and its bull on a square lattice of size 1003¢ 100,
Clusters and hulls have a similar behaviour but the critical exponents have different
magnitudes. The exponents o, and 7y have similar values within the margin of error
for both the square and triangular lattices. The last two results are in agreement with
the scaling behaviour characteristic of undirected percolation. In this case, the clusters
are also fractal objects and are not nearly compact as in the case of spiral percolation.
The values of vy and ¥y quoted in table 2 do not seem to agree within the limits of
error for the square and triangular lattices, Apparently, the errors have been underesti-
mated. The expressions (7) for oy and 74 involve differences in the values of v} and
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Figure 10. A plot of Py(p)/ Py{p.} against (p—p,)H® for 13 different values of p with
oy =0.510 for the triangular lattice, { p — p.) has values in the range 0.015 to ~0.110 with
16 < H </512. The symbol & indicates the position of the point (0, 1). The data plotted

correspond to p—p.=0.015 (#), =030 (O), —0.035 (O), —0.040 (A), —0.045 (), ~0.050
(+}, ~0.055 (x), —0.060 (¥}, —0.070 (%), —0.080 (M), —0.090 (@), —=0.100 (A) and —=0.110
{¥).

(a}

(5

Figure 11. Example of () a spiral percolation spanning cluster and (b) its hull on a square
lattice of size 100x 100 at p,=0.7083.

v, which lead to an agreement of values of oy and 7y within the limits of error for
both the square and triangular lattices. For undirected percolation, Sapoval et al (1985)
have proposed the relation Dy =1+ 1/» between the fractal dimension Dy of the hull
and the correlation length exponent ». This prediction is supported by direct measure-
ment (Voss 1984, Kremer and Lyklema 1985). From tables 1 and 2 one can verify that

the conjectured relation does not hold true for spiral site percolation and so seems to
be characteristic only of undirected percolation.
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